
Neural Nets & Deep Learning

George Chen 
(some neural net & deep learning slides are by Phillip Isola)

CMU 95-865 Spring 2018



Crumpled Paper Analogy

Analogy: Francois Chollet, photo: George Chen

binary classification: 2 crumpled 
sheets of paper corresponding to the 

different classes

deep learning: series (“layers”) of 
simple unfolding operations to try to 

disentangle the 2 sheets



Deep Learning

• Inspired by biological neural nets but otherwise not the same 
at all (biological neural nets do not work like deep nets)

• Learns a layered representation

• Tries to get rid of manual feature engineering

“clown fish”

Learned



Why Does Deep Learning Work?
Actually the ideas behind deep learning are old (~1980’s)

• Big data

• Better hardware

GPU’s
TPU’s

CPU’s 
& Moore’s law

• Better algorithms



Structure Present in Data Matters

Neural nets aren’t doing black magic

• Image analysis: convolutional neural networks (convnets) 
neatly incorporates basic image processing structure

• Time series analysis: recurrent neural networks (RNNs) 
incorporates ability to remember and forget things over time

• Note: text is a time series

• Note: video is a time series



Handwritten Digit 
Recognition Example

Walkthrough of building a 1-layer and then a 2-layer neural net



Handwritten Digit Recognition

length 784 vector 
(784 input neurons)

28x28 image

flatten & 
treat as 

1D vector

“dense” layer 
with 10 numbers

“dense” 
layer final 

output

weighted sums activation

(can be 
thought of 
as post-

processing)

(parameterized 
by a weight 

matrix W and 
a bias b)

single “dense” layer with 10 neurons



Handwritten Digit Recognition

length 784 vector 
(784 input neurons)

“dense” layer 
with 10 numbers

weighted sums

(parameterized 
by a weight 

matrix W and 
a bias b)

input dense

W b

(1D numpy array with 784 entries) (1D numpy array with 10 entries)

(2D numpy array 
of dimensions 

784-by-10)
(1D numpy array 
with 10 entries)



Handwritten Digit Recognition

length 784 vector 
(784 input neurons)

“dense” layer 
with 10 numbers

weighted sums

(parameterized 
by a weight 

matrix W and 
a bias b)

input dense

W b

(1D numpy array with 784 entries) (1D numpy array with 10 entries)

(2D numpy array 
of dimensions 

784-by-10)
(1D numpy array 
with 10 entries)

…

dense[0] = np.dot(input, W[:, 0]) + b[0]
dense[1] = np.dot(input, W[:, 1]) + b[1]

dense[j] =
783�

i=0

input[i] W[i, j]�

+ b[j]



Handwritten Digit Recognition

length 784 vector 
(784 input neurons)

“dense” layer 
with 10 numbers

weighted sums

(parameterized 
by a weight 

matrix W and 
a bias b)



Handwritten Digit Recognition

length 784 vector 
(784 input neurons)

28x28 image

flatten & 
treat as 

1D vector

“dense” layer 
with 10 numbers

“dense” 
layer final 

output

weighted sums activation

(can be 
thought of 
as post-

processing)

(parameterized 
by a weight 

matrix W and 
a bias b)

single “dense” layer with 10 neurons



Handwritten Digit Recognition

“dense” 
layer final 

output

activation

(can be 
thought of 
as post-

processing)

“dense” layer 
with 10 numbers

Many different activation functions possible

Example: Rectified linear unit (ReLU) 
zeros out entries that are negative

4

3.5

4

-1

0.5

2

-4

3

-2

5

dense
dense_final

dense_final = np.maximum(0, dense)

4

3.5

4

0

0.5

2

0

3

0

5

ReLU



Handwritten Digit Recognition

“dense” 
layer final 

output

activation

(can be 
thought of 
as post-

processing)

“dense” layer 
with 10 numbers

Many different activation functions possible

Example: softmax turns the entries in the 
dense layer (prior to activation) into a 
probability distribution (using the “softmax” 
transformation)

dense_exp = np.exp(dense) 
dense_exp /= np.sum(dense_exp) 
dense_final = dense_exp

dense
dense_final

4

3.5

4

-1

0.5

2

-4

3

-2

5

0.17

0.10

0.17

0.00

0.01

0.02

0.00

0.06

0.00

0.46

softmax



Handwritten Digit Recognition

length 784 vector 
(784 input neurons)

28x28 image

flatten & 
treat as 

1D vector

“dense” layer 
with 10 numbers

“dense” 
layer final 

output

weighted sums softmax

(can be 
thought of 
as post-

processing)

(parameterized 
by a weight 

matrix W and 
a bias b)

single “dense” layer with 10 neurons

Pr(digit 0)
Pr(digit 1)
Pr(digit 2)

Pr(digit 9)

Pr(digit 3)
Pr(digit 4)
Pr(digit 5)
Pr(digit 6)
Pr(digit 7)
Pr(digit 8)



Handwritten Digit Recognition

length 784 vector 
(784 input neurons)

28x28 image

flatten & 
treat as 

1D vector

We want the output of the 
dense layer to encode 

probabilities for whether the 
input image is a 0, 1, 2, …, 9  

but as of now we aren’t 
providing any sort of 

information to enforce this

dense layer with 
10 neurons, 

softmax activation, 
parameters W, b



Handwritten Digit Recognition

Demo part 1



Handwritten Digit Recognition

length 784 vector 
(784 input neurons)

28x28 image

flatten & 
treat as 

1D vector

dense layer with 
10 neurons, 

softmax activation, 
parameters W, b



Handwritten Digit Recognition

length 784 vector 
(784 input neurons)

28x28 image

flatten & 
treat as 

1D vector

Training label: 6

Loss/“error” error
Popular loss function for 

classification (> 2 classes): 
categorical cross entropy

Error is 
averaged 

across training 
examples

Learning this 
neural net 

means learning 
W and b

1
Pr(digit 6)log

dense layer with 
10 neurons, 

softmax activation, 
parameters W, b



Handwritten Digit Recognition

Demo part 2



Handwritten Digit Recognition

length 784 vector 
(784 input neurons)

28x28 image

flatten & 
treat as 

1D vector

Training label: 6

Loss/“error” error
Popular loss function for 

classification (> 2 classes): 
categorical cross entropy

Error is 
averaged 

across training 
examples

Learning this 
neural net 

means learning 
W and b

1
Pr(digit 6)log

dense layer with 
10 neurons, 

softmax activation, 
parameters W, b



Handwritten Digit Recognition

length 784 vector 
(784 input neurons)

28x28 image
dense layer with 

10 neurons, 
softmax activation

Training label: 6

Loss/“error” error
Popular loss function for 

classification (> 2 classes): 
categorical cross entropy

Error is 
averaged 

across training 
examples

dense layer 
with 512 

neurons, ReLU 
activation

1
Pr(digit 6)log

Learning this neural net 
means learning parameters 

of both dense layers!



Handwritten Digit Recognition

Demo part 3



Architecting Neural Nets
• Increasing number of layers (depth) makes neural net more 

complex
• Can approximate more functions
• More parameters needed

• More training data may be needed

• Designing neural net architectures is a bit of an art
• How to select the number of neurons for intermediate 

layers?
• Very common in practice: modify existing architectures 

that are known to work well (e.g., VGG-16 for computer 
vision/image processing)



GoogLeNet 2014


